Dual Allosteric Inhibitors Jointly Modulate Protein Structure and Dynamics in the Hepatitis C Virus Polymerase.

نویسندگان

  • Jodian A Brown
  • Ian F Thorpe
چکیده

The hepatitis C virus (HCV) infects close to 200 million people globally, resulting in a significant need for effective HCV therapies. The HCV polymerase (gene product NS5B) is a valuable target for therapeutics because of its role in replicating the viral genome. Various studies have identified inhibitors for this enzyme, including non-nucleoside inhibitors (NNIs) that bind distal to the enzyme active site. Recently, it has been shown that simultaneously challenging the enzyme with two NNIs results in enhanced inhibition relative to that observed after challenge with individual inhibitors, suggesting that employing multiple NNIs might be the basis of more effective therapeutics. Nevertheless, the molecular mechanisms responsible for this enhanced inhibition remain unclear. We employ molecular dynamics simulations to determine the origin of enhanced inhibition when two NNIs bind to NS5B. Our results suggest that nonoverlapping NNI sites are compatible with simultaneous binding of dual NNIs. We observe that both inhibitors act in concert to induce novel enzyme conformations and dynamics, allowing us to identify molecular mechanisms underlying enhanced inhibition of NS5B. This knowledge will be useful in optimizing combinations of NNIs to target NS5B, helping to prevent the acquisition of viral resistance that remains a significant barrier to the development of HCV therapeutics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric inhibitors have distinct effects, but also common modes of action, in the HCV polymerase.

The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase. H...

متن کامل

Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase

Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four in...

متن کامل

The Full Length Hepatitis C Virus Polyprotein and Interactions with the Interferon-Beta Signalling Pathways in vitro

Background: Hepatitis C is a global health problem. The exact mechanisms by which hepatitis C virus (HCV) can evade the host immune system have become controversial. Whether HCV polyproteins modulate IFN signalling pathways or HCV proteins are responsible for such a property is the subject of interest. Therefore, an efficient baculovirus delivery system was developed to introduce the whole geno...

متن کامل

Overexpression of Full-Length Core Protein of Hepatitis C Virus by Escherichia coli Cultivated in Stirred Tank Fermentor

The mature core protein of the Hepatitis C virus (HCVC173) carrying pelB as a signal peptide (PelB::core) was overexpressed in Escherichia coli as 18% and 23.3% of the host’s total protein, in flask and fermentor cultivation, respectively. A final specific yield of 25 ± 1 mg HCVC173/g dry cell weight and an overallproductivity of 51±1 mg HCVC173/l/h were obtained in the stirred-tank ferme...

متن کامل

Structure based virtual screening of inhibitors for binding at the allosteric site of HCV RNA dependent RNA polymerase

Hepatitis C Virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at a risk of developing significant morbidity and mortality. There is no effective treatment or prevention till date for HCV infection. We describe the computed binding of 10 compounds to the allosteric binding site of RNA dependent RNA polymerase enzyme. These...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 54 26  شماره 

صفحات  -

تاریخ انتشار 2015